
Java 9 Performance
By Jeroen Borgers

#jfall15
Contents

•Introduction
•Modular Java
•Overview & performance

•Compiler improvements & API
•Improved locking
•Variable handles
•Diagnostics
•Garbage collector
•Compact Strings
•Summary and Conclusions
•Questions

#jfall15
Introduction

• Java 8 introduced lambda’s and (parallel) streams

• Java 9 introduces Jigsaw

• Will life change with Java 9?

• What about performance?

#jfall15
Schedule

• 2015/12/10 Feature Complete

• 2016/02/04 All Tests Run

• 2016/02/25 Rampdown Start

• 2016/04/21 Zero Bug Bounce

• 2016/06/16 Rampdown Phase 2

• 2016/07/21 Final Release Candidate

• 2016/09/22 General Availability

#jfall15
Schedule

• 2015/12/10 Feature Complete

• 2016/02/04 All Tests Run

• 2016/02/25 Rampdown Start

• 2016/04/21 Zero Bug Bounce

• 2016/06/16 Rampdown Phase 2

• 2016/07/21 Final Release Candidate

• 2016/09/22 General Availability

#jfall15
Schedule

• Now: EA jigsaw-b86, b90

• 2015/12/10 Feature Complete

• 2016/02/04 All Tests Run

• 2016/02/25 Rampdown Start

• 2016/04/21 Zero Bug Bounce

• 2016/06/16 Rampdown Phase 2

• 2016/07/21 Final Release Candidate

• 2016/09/22 General Availability

#jfall15
How will life change?

• No more rt.jar, tools.jar in Java runtime

• Tools like IntelliJ and Eclipse currently rely on it and will not run

• Modules instead: added logical layer

• Accessible at runtime via URL:

• jrt:/java.base/java/lang/String.class

• Unrecognized VM options

• Deprecated in JDK 8, removed now

• -XX:MaxPermSize

#jfall15
How will life change? -2

• Several Java API’s not accessible anymore

• internal, unsupported and not portable: sun.*, com.sun.*, java.awt.peer

• jdeps from Java 8 helps to find static dependencies

• G1 default collector

• ‘_’ no longer allowed as identifier by itself

• private interface methods (instance and static) possible

• To complete default and static interface methods of Java 8

• No more support for java -source and -target < 1.6

#jfall15
Project Jigsaw goals

#jfall15
Project Jigsaw goals

• Make platform&JDK more easily scalable down to
small computing devices;

• Improve security and maintainability

• Enable improved application performance; and

• Make it easier for developers to construct and
maintain libraries and large applications.

#jfall15

Platform Module System, JSR
376 - Improved performance

• Platform, library, and application components are
put in one runtime and dependencies are known

• Ahead-Of-Time and Whole-Program optimizations
are more effective

#jfall15
Modules enable optimizations

• Known where code will be used, optimizations more feasible;

• JVM-specific memory images that load faster than class files;

• Fast lookup of both JDK and application classes;

• early bytecode verification;

• ahead-of-time (AOT) compilation of method bodies to native
code;

• the removal of unused fields, methods, and classes; and

• aggressive inlining of, e.g., lambda expressions.

#jfall15
Startup Performance

• Current JVM startup:

• class loading slow: executes a linear scan of all JARs on
classpath

• Annotation detection requires to read all classes in package(s)

• Spring: <context:component-scan base-
package="your.package.name" />

• Modules will provide a fast class-lookup, including by
annotation, without reading all class files

• Indexes created when the module is compiled

#jfall15

Modular Java - JEP 220:
Modular Run-Time Images

#jfall15
JDK Module Graph

#jfall15
JDK Module Graph

#jfall15

inside the .jimage file -
jimage tool

• Demo

#jfall15
jimage tool

#jfall15
jimage tool

#jfall15
jimage tool

#jfall15
jimage and jdeps tool

#jfall15
jimage and jdeps tool

#jfall15
Packaging: JMOD files

#jfall15

jmod = jar++
for compile and link time

#jfall15
jlink example

• native debug files excluded

• Small size image: 29 MB, can be 12
MB

• Class optimization plugin

• Class.forName removal when
accessible

#jfall15
Compiler improvements

• JEP 165: Compiler Control

• method specific flags, file: inline:["+java.util.*", "-com.sun.*"]

• runtime manageable: jcmd <pid> Compiler.add_directives <file>

• JEP 199: Smart Java Compilation

• sjavac: smart wrapper around javac

• incremental compiles - recompile only what's necessary

• parallel compilation - utilize cores during compilation

• keep compiler in hot VM - reuse JIT'ed javac instance for consecutive
invocations

#jfall15
Compiler API - JEP 243

• Allow Java code to observe, query, and affect
JVM's compilation

• Pluggable JIT compiler architecture

• Graal

• May persist code profile and reuse it AOT, avoid
JVM warm-up

• Like Azul’s ReadyNow!

#jfall15

JEP 143: Improve
contended locking

• 22 many-threads benchmarks

• Field reordering and cache line alignment

• Speed up PlatformEvent::unpark()

• Fast Java monitor enter and exit operations

• Fast Java monitor notify/notifyAll operations

#jfall15
JEP 193: Variable handles
• Typed reference to a variable

• Atomicity for object fields, array elements and ByteBuffers

• like java.util.concurrent.atomic, sun.misc.Unsafe operations

• java.lang.invoke.VarHandle, next to MethodHandle from Java7

• java.util.concurrent will move from use of Unsafe to
VarHandles

• VH will use Unsafe internally

• What is that Unsafe class? In thread stacks I see: Unsafe.park

#jfall15

By: @arturotena

#jfall15
Unsafe.park - 2

www.circlecity.co.uk

http://www.circlecity.co.uk

#jfall15
Side step: sun.misc.Unsafe
• Better alternative to native C or assembly code via JNI

• Atomic compare-and-swap operations like in AtomicInteger, ConcurrentHashMap

public final native boolean compareAndSwapInt(Object o, long
offset, int expected, int x)

• Direct access to native, off-heap memory

public native long allocateMemory(long bytes); //quite unsafe!

• Creating objects without calling constructor like in Serialization

• High performance; special handling by JVM

• methods are intrinsified: assembler instruction inlined to caller, no JNI-call
overhead

#jfall15
Side step: sun.misc.Unsafe
• Access to Unsafe is restricted to JDK classes however

• Can be worked around by reflection

• Java 9 puts Unsafe in jdk internal module

• Safe and updated alternatives come available: VarHandles

• Libs currently using Unsafe: Netty, Hazelcast, Kryo,
Cassandra, Spring, Akka, ..

• command line flag makes Unsafe readable for transition
period

#jfall15
JEP 193: Variable handles
• Use case:

class Position {

private volatile int x = 0;

public void walkRight() {

x++;

}

}

• Is it thread safe?

#jfall15
JEP 193: Variable handles
• Use case:

class Position {

private volatile int x = 0;

public void walkRight() {

x++;

}

}

• Not thread-safe because x++ is in fact two operations:

int tmp = this.x;

this.x = tmp + 1;

• Other thread may walkRight in between these two and have his result lost

#jfall15
JEP 193: Variable handles
• Solution:

class Position {

private AtomicInteger x = new AtomicInteger();

public void walkRight() {

x.incrementAndGet();

}

}

• memory usage compared to previous?

#jfall15
JEP 193: Variable handles
class Pos {

private int x = 0;

public void walkRight() {

x = VH_POS_X.addAndGet(this, 1);

}

}

#jfall15
JEP 193: Variable handles
class Pos {

private static final VarHandle VH_POS_X;

private int x = 0;

 static {

 try {

 VH_POS_X = MethodHandles.lookup().

 in(Pos.class).findFieldVarHandle(Pos.class, "x", int.class);

 } catch (Exception e) { throw new Error(e); }

 }

public void walkRight() {

 VH_POS_X.addAndGet(this, 1);

}

}

#jfall15
More diagnostic commands
Jeroens-MacBook-Pro-2:Home jeroen$ jcmd 31142 VM.class_hierarchy
31142:
java.lang.Object/null
|--java.lang.reflect.Proxy$ProxyBuilder$$Lambda$122/123322386/null
|--jdk.internal.jimage.ImageBufferCache/null
|--org.netbeans.core.windows.view.ModeAccessor/0x00007faf026d8730 (intf)
|—java.lang.invoke.LambdaForm$DMH/1841321848/null

Jeroens-MacBook-Pro-2:Home jeroen$ jcmd 31142 VM.stringtable
\31142:
StringTable statistics:
Number of buckets : 60013 = 480104 bytes, avg 8.000
Number of entries : 17882 = 429168 bytes, avg 24.000
Number of literals : 17882 = 1604736 bytes, avg 89.740
Total footprint : = 2514008 bytes
Average bucket size : 0.298
Variance of bucket size : 0.299
Std. dev. of bucket size: 0.547
Maximum bucket size : 4

• Compiler.queue .codelist, .codecache
• VM.set_flag

#jfall15
G1 as default collector

• G1 default on 32 and 64 bit server configs

• Replaces Parallel GC as default

• Parallel GC shows long pauses for large heaps

• JDK8_u40 / JEP 156: G1 now supports class unloading instead of needing
a full GC

• Optimizes for low pause time

• Not for throughput nor CPU load!

• May need more tuning

• -XX:MaxGCPauseMillis=n

#jfall15
Compact Strings

• Improve space efficiency of String, StringBuilder, etc.

• String is often biggest consumer of the heap

• Characters are UTF-16: 2 bytes, while most apps use only Latin-1: 1 byte

• New: byte[] or char[], + encoding flag field

• Less allocation, less GC, less data on bus: so also better time efficiency!

• SPECjbb2005 server app benchmark:

• 21% less live data

• GC: 21% less frequent, 17% less long

• 10% better app throughput

Java 9 Performance
Summary and Conclusions

• Modules

• Big incompatible change in JDK 9

• Performance optimizations introduced and enabled

• class loading, startup time, more aggressive optimizations

• Internal, fast Unsafe features made available with VarHandles

• Innovation on compilers front

• Faster javac, more control, pluggable JIT, AOT

• Faster dealing with more data and threads

• G1, compact strings, contention

#jfall15

Java 9 Performance
Questions?

#jfall15
Want to learn more?

•www.jpinpoint.com / www.profactive.com
• references, presentations

•Accelerating Java Applications
•3 days technical training
•March 2015
•nl-jug members 10% discount
•hand-in business card today: 15% discount

http://www.jpinpoint.com
http://www.profactive.com

#jfall15

Please rate my talk in the official J-Fall app!

